4,564 research outputs found

    Spatial patterns in mesic savannas: the local facilitation limit and the role of demographic stochasticity

    Get PDF
    We propose a model equation for the dynamics of tree density in mesic savannas. It considers long-range competition among trees and the effect of fire acting as a local facilitation mechanism. Despite short-range facilitation is taken to the local-range limit, the standard full spectrum of spatial structures obtained in general vegetation models is recovered. Long-range competition is thus the key ingredient for the development of patterns. The long time coexistence between trees and grass, and how fires affect the survival of trees as well as the maintenance of the patterns is studied. The influence of demographic noise is analyzed. The stochastic system, under the parameter constraints typical of mesic savannas, shows irregular patterns characteristics of realistic situations. The coexistence of trees and grass still remains at reasonable noise intensities.Comment: 12 pages, 7 figure

    Online games: a novel approach to explore how partial information influences human random searches

    Full text link
    Many natural processes rely on optimizing the success ratio of a search process. We use an experimental setup consisting of a simple online game in which players have to find a target hidden on a board, to investigate the how the rounds are influenced by the detection of cues. We focus on the search duration and the statistics of the trajectories traced on the board. The experimental data are explained by a family of random-walk-based models and probabilistic analytical approximations. If no initial information is given to the players, the search is optimized for cues that cover an intermediate spatial scale. In addition, initial information about the extension of the cues results, in general, in faster searches. Finally, strategies used by informed players turn into non-stationary processes in which the length of each displacement evolves to show a well-defined characteristic scale that is not found in non-informed searches.Comment: 17 pages, 10 figure

    Vegetation pattern formation in semiarid systems without facilitative mechanisms

    Get PDF
    Regular vegetation patterns in semiarid ecosystems are believed to arise from the interplay between long-range competition and facilitation processes acting at smaller distances. We show that, under rather general conditions, long-range competition alone may be enough to shape these patterns. To this end we propose a simple, general model for the dynamics of vegetation, which includes only long-range competition between plants. Competition is introduced through a nonlocal term, where the kernel function quantifies the intensity of the interaction. We recover the full spectrum of spatial structures typical of vegetation models that also account for facilitation in addition to competition.Comment: 21 pages, 3 figure

    Minimal mechanisms for vegetation patterns in semiarid regions

    Get PDF
    The minimal ecological requirements for formation of regular vegetation patterns in semiarid systems have been recently questioned. Against the general belief that a combination of facilitative and competitive interactions is necessary, recent theoretical studies suggest that, under broad conditions, nonlocal competition among plants alone may induce patterns. In this paper, we review results along this line, presenting a series of models that yield spatial patterns when finite-range competition is the only driving force. A preliminary derivation of this type of model from a more detailed one that considers water-biomass dynamics is also presented. Keywords: Vegetation patterns, nonlocal interactionsComment: 8 pages, 4 figure

    Temporal disorder in up-down symmetric systems

    Get PDF
    The effect of temporal disorder on systems with up-down Z2 symmetry is studied. In particular, we analyze two well-known families of phase transitions: the Ising and the generalized voter universality classes, and scrutinize the consequences of placing them under fluctuating global conditions. We observe that variability of the control parameter induces in both classes "Temporal Griffiths Phases" (TGP). These recently-uncovered phases are analogous to standard Griffiths Phases appearing in systems with quenched spatial disorder, but where the roles of space and time are exchanged. TGPs are characterized by broad regions in parameter space in which (i) mean first-passage times scale algebraically with system size, and (ii) the system response (e.g. susceptibility) diverges. Our results confirm that TGPs are quite robust and ubiquitous in the presence of temporal disorder. Possible applications of our results to examples in ecology are discussed

    Violencia de género en la familia: perspectiva jurídico penal

    Get PDF
    Se analizan desde una perspectiva garantista la Constitución Federal y los tratados internacionales que obligan al Estado a tutelar penalmente el derecho humano de la mujer a una vida libre de violencia en el hogar. Se concluye que para cumplir con este deber es ineludible la creación legislativa de tipo penal que sancione la violencia familiar asociada a la violencia de género. Esta acción legislativa sería parte de una nueva política criminológica dedicada específicamente a la prevención, sanción y erradicación de la violencia de género en el hogar

    Demographic effects of aggregation in the presence of a component Allee effect

    Full text link
    Intraspecific interactions are key drivers of population dynamics because they establish relations between individual fitness and population density. The component Allee effect is defined as a positive correlation between any fitness component of a focal organism and population density, and it can lead to positive density dependence in the population per capita growth rate. The spatial structure is key to determining whether and to which extent a component Allee effect will manifest at the demographic level because it determines how individuals interact with one another. However, existing spatial models to study the Allee effect impose a fixed spatial structure, which limits our understanding of how a component Allee effect and the spatial dynamics jointly determine the existence of demographic Allee effects. To fill this gap, we introduce a spatially-explicit theoretical framework where spatial structure and population dynamics are emergent properties of the individual-level demographic rates. Depending on the intensity of the individual processes the population exhibits a variety of spatial patterns that determine the demographic-level by-products of an existing individual-level component Allee effect. We find that aggregation increases population abundance and allows populations to survive in harsher environments and at lower global population densities when compared with uniformly distributed organisms. Moreover, aggregation can prevent the component Allee effect from manifesting at the population level or restrict it to the level of each independent group. These results provide a mechanistic understanding of how component Allee effects operate for different spatial population structures and show at the population level. Our results contribute to better understanding population dynamics in the presence of Allee effects and can potentially inform population management strategies

    Species exclusion and coexistence in a noisy voter model with a competition-colonization tradeoff

    Get PDF
    We introduce an asymmetric noisy voter model to study the joint effect of immigration and a competition-dispersal tradeoff in the dynamics of two species competing for space in regular lattices. Individuals of one species can invade a nearest-neighbor site in the lattice, while individuals of the other species are able to invade sites at any distance but are less competitive locally, i.e., they establish with a probability g1g \le 1. The model also accounts for immigration, modeled as an external noise that may spontaneously replace an individual at a lattice site by another individual of the other species. This combination of mechanisms gives rise to a rich variety of outcomes for species competition, including exclusion of either species, mono-stable coexistence of both species at different population proportions, and bi-stable coexistence with proportions of populations that depend on the initial condition. Remarkably, in the bi-stable phase, the system undergoes a discontinuous transition as the intensity of immigration overcomes a threshold, leading to a half loop dynamics associated to a cusp catastrophe, which causes the irreversible loss of the species with the shortest dispersal range.Comment: 13 pages, 9 figures, 3 appendice
    corecore